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BAYESIAN ANALYSIS OF ARMA PROCESSES: COMPLETE SAMPLING BASED

INFERENCE UNDER FULL LIKELIHOODS

John Marriott, Nalini Ravishanker, Alan Gelfand

and

Jeffrey Pai*

Abstract

For a general stationary and invertible ARMA (p,q) process, we show how to carry

out a fully Bayesian analysis. Our approach is through the use of sampling based methods

involving three novel aspects. First the constraints on the parameter space arising from

the stationarity and invertibility conditions are handled by a convenient reparametrization

to all of Euclidean (p+q)-space. Second, required sampling is facilitated by the

introduction of latent variables which, though increasing the dimensionality of the

problem, greatly simplifies the evaluation of the likelihood. Third, the particular sampling

based approach used is a Markov chain Monte Carlo method which is a hybrid of the Gibbs

sampler and the Metropolis algorithm. We also briefly show how straightfc-rwardly the

sampling based approach accommodates missing observations, outlier detection, prediction

and model determination. Finally we illustrate the approach with two examples.

Keywords: Gibbs sampler, invertibility, latent variables, Metropolis algorithm, missing

values, outliers, prediction, stationarity.
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1. Introduction

Autoregressive moving average models constitute a broad class of parsimonious time

series processes which are useful in describing a wide variety of time series. In particular,

the process {zt} is said to be an autoregressive moving average process of order p, q,

ARMA (p, q), with mean A, if it is generated by

O(B)(zt-#) = O(B)et (1
where B is the backward shift operator, B k zt = Ztk' { Ct } is a Gaussian white noise process

with variance 02 , O(B) = 1 -•1 B - - P and OB) =1 - 01 B ..... PqBq are

polynomials in B of degrees p and q respectively.

For the process to be stationary the roots of O(B) = 0 must lie outside the unit

circle and if the roots of 0(B) = 0 also lie outside the unit circle the process is said to be

invertible, in which case there is a unique model corresponding to the likelihood function.

It may be argued (Box and Jenkins, 1976) that, in forecasting, a nonstationary process is

undesirable and a noninvertible process is meaningless.

If the stationarity and invertibility conditions are to be satisfied, the parameter

vectors, 0 = (01 ," "', O) and 8= (01 ,oo , 0q), are constrained to lie in regions CP and Cq,

respectively, corresponding to the polynomial operator root conditions. Allowable values of

(0, 0) then lie in CpxCq, the forms of which are simple to identify for p<2, q<2. However

for k>2 the form of Ck becomes complicated and for k>4 the polynomial equations O(B) =

0 and O(B) = 0 cannot, in general, be solved analytically.

In a Bayesian setting, for a stationary invertible ARMA (p,q) time series model of

the form (1), the region CpXCq determines the ranges of integration for obtaining joint and

marginal distributions of the parameters and for evaluating posterior expected values.

Historically, Bayesian analysis of these models ignores this region in order to obtaiin

convenient distributional results for the posterior densities. See, e.g., Zellner (1971), Box

and Jenkins (1976), Broemeling (1985), Broemeling and Shaaraway (1988). Only Monahan
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(1983) and Marriott and Smith (1992) have restricted the analysis to CCq employing

analytic numerical integration techniques. Monahan's calculations used fixed point

quadrature rules for p+q<2 while Marriott and Smith extended these results using the

Gauss-Hermite rules described in Smith et. al. (1987). Generally, to accurately perform

such numerical integration requires specialist software and expertise and typically, for a

model with unknown A and o , becomes infeasible for p+q_4.

We propose the use of sampling based methods to obtain desired marginal

posteriors. In particular, the introduction of the Gibbs sampler as a tool for Bayesian

calculations in Gelfand and Smith (1990) has spurred considerable interest in Markov chain

Monte Carlo methods. We use a variant of the Gibbs sampler described in Mfiller (1991).

Recently Chib (1991) and Chib and Greenberg (1992) have utilized the Gibbs sampler for

Bayesian analysis of AR and MA processes. Their work differs from ours in several ways.

Most notably, in the first of these papers the conditional likelihood is used while in the

second a computationally expensive form of the unconditional likelihood is used. In neither

paper is the full ARMA model handled. Proposed sampling from complete conditionals for

0 and 0 requires a "double rejection" method. In our early work we abandoned such

sampling as terribly inefficient for larger p and q. We also note that McCulloch and Tsay

(1991) have employed the Gibbs sampler for a Bayesian analysis of autoregressive processes

again ignoring stationarity restrictions. Carlin, Polson and Stoffer (1992) use the Gibbs

sampler for Bayesian analysis of first order dynamic models also without concern for

stationarity.

The outline of the paper then is as follows. In Section 2 we give the ARMA

likelihoods in a form well suited for our Monte Carlo method. In Section 3 we obtain the

complete conditional distributions required for the Gibbs sampler. Section 4 provides a

useful transformation to enable us to handle the stationarity and invertibility constraints.

Section 5 describes a modified Gibbs sampler which works well for time series models with
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Gaussian error. Section 6, 7 and 8 briefly deal with the issues of missing data, prediction

and model determination. Finally Section 9 analyzes two interesting data sets.

2. Likelihood forms

In Section 2.1 we note that the likelihood for the general ARMA (p,q) model can be

written in a relatively simple form by conditioning upon the unobserved history of the

process. This form is inexpensive to evaluate making it attractive for use with the Gibbs

sampler. In Section 2.2 we observe that for the pure autoregressive process, AR(p), we can

marginalize over this history resulting in a lower dimensional likelihood which can still be

evaluated cheaply.

2.1 The general ARMA (pq) likelihood

For the general ARMA (p,q) model in (1) the form of the exact likelihood is known

(Newbold, 1974). While in theory it is possible to work with this form, its evaluaticn,

unless the sample size is very small, is computationally very expensive rendering it

infeasible for use with a Monte Carlo approach. A form for the likelihood which is well

suited for sampling based techniques can be developed by introducing latent variables

(parameters). Dimensionality of the parameter space is increased in exchange for a

manageable likelihood.

Letting yt = zt - A, (1) can be written as

p q
Yt-- E 0.yt-- 2 0. + +. (2)

j-l j=l J t

Hence we denote the likelihood for n observations z = (z,, -- , z. ) by f(z; •) where

S=( , , p , o ý ) w i t h -= ( 1 , "'. , O P ) a n d 0 = ( 0 1 , - . ., q ) . W e i n t r o d u c e a s l a t e n t

variables the unobserved history yo = (Yo) Y1, ... ' YI-p) and o = (, -' E " " -q)
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resulting in the augmented parameter vector • = (Y0 , e0 , A, 0' 2) of dimension

2(p+q+l). The conditional likelihood is then obtained from the factorization

Az -I V) = f(z.1 I 1) *2z 1• ¢)""fC.Iý ... , f"n I zn-, i )

= (2 7ro exp E (3)

p q
where A, =iEl i y 1-i -i2 Oi

i=1 1=1

p t-1 q/•t = E i -i•. i(YCti _ i _ fort= 2, *.',q
i=1 i~li=t

p q
and At=E i i Yt-i - E Oi(Yt'i -5•t) d fort = q+1, -.- ,n.

2.2 The general AR(p) likelihood

In the special case of an AR(p) process (0(B) E 1) latent variables are not needed.

We have o = (•, t, a2 ) and the exact likelihood can be factored, analogous to (3), as

f(zI.o) = (2 -r)- -T H (y'-A)O'. (4)
t=l1 t=l

2 2In (4), A = 0, o, E ojyo+ 2 E Oi j yj.!+ , while for t = 2,.* ,p
j=1 1<i<j<p

" -At = OJYt- Olt = + 0 -to + 2  i + a2 and for t = p+l,..,n,

j=1 j=t t<i<j<p
P2 2

At = E -j a t - "
j=1

Here yk, k = 0, 1, 2, ..- is the autocovariance of the AR(p) process of lag k. Using

'0 = a2 /(1- 1 P1 -..... - pP), we can write
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2 or.2 2a 1-tp 01i +pjl 2i1;j Ob~j p. + 01
€I<J

and fort =2,-.,p

2"0.

2 a 2

tt i<t<ji

wherepj = •, so that, for all t, ot is of the form o2 ct. The pI's can be obtained in terms

of the 0's using McLeod's (1975, 1977) algorithm.

3. Complete conditional distributions

Given a prior distribution on *¶, 7r(b*) the posterior density for #1

TW I1Z) 01 A~ZI ) • 10') (5)

Bayesian inference proceeds by obtaining marginal posterior distributions of the

components of e as well as features of these distributions.

The Gibbs sampler introduced by Gelfand and Smith (1990) as a tool for carrying

out Bayesian calculations is a Markovian updating scheme which requires sampling from

the complete conditional distributions associated with io (see e.g., Gelfand and Smith or

Gelfand et. al., 1990, for details). A key point is that each complete conditional density is

also proportional to the right side of (5). In certain cases, we may recognize this form as

that of a standard distribution. In more challenging cases, it emerges only as a non

standard, non normalized density. We shall see that, for the Bayesian models in (5), the

complete conditional distributions for it and a2 illustrate the former case with 0 and 0

illustrating the latter.

In the general ARMA (p,q) case it is tempting to consider a noninformative prior

specification for fe, 7r(1O) a a-2. Unfortunately such specification yields posterior

distributions for yo and to which are improper. (This may be readily seen from
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straightforward calculations for, say, an ARMA (1,0) model). Rather, since the yo and CO

are, in fact, like yt and ct respectively, their prior specificat'•n should be a proper

distribution given io. Hence the prior for V takes the form

S= (Yo, CO1 ) •-

where we can assume a noninformative specification for 7r(o), i.e., 7r(10) a -2

Indeed, Newbold (1974, p. 424) presents the choice of r(yo, co[ 1) which, upon

integration over yo and co, yields the previously mentioned exact likelihood. It is a

multivariate normal with mean 0 and covariance matrix A arising from the stationary

ARMA process. Working with the (p+q)x(p+q) matrix A presents the same

computational problem as working with the exact likelihood. We make a simplification

which, on both intuitive and empirical grounds, little affects inference about io or forecasts.

We replace A with A 0 where 1o is the variance of the stationary ARMA
0 O 21IqqJ

(p,q) process and a is the assumed error variance. Thus, the joint posterior density for *

is

"r(/ijz) a exP{- 2o E(yt-At)'} 7 O 1) (6)
2a t=1

with At defined below (3).

With a little manipulation, we may show that the complete conditional distribution
1n •22

for A is normal with mean 1 t (zt - At) and variance -- and that for a it is inverse
nt=1

n
Gamma, i.e., IG(', ½ tl(yF-#) 2 )" We note that a constant mean A for the z's need not

be assumed. Rather, for observation zt we could replace A with xTP where x is a vector of

covariates. No complications to the sampling-based approach result; the normal complete

conditional distribution for A is replaced by a multivariate normal complete conditional

distribution for P. The complete conditional densities for the O's and 0's are proportional

to (6) and must be sampled subject to the restriction to CpNCq. We develop an efficient
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sampling procedure in Section 5. The complete conditional distributions of the latent
variables c1-j and y,-j can be shown to all be normal. However calculation of means and

variances requires complicated bookkeeping as the expressions involve summations over

t = 1, 2, -.- , n with individual terms having forms which change according to the values of

t, j, p and q. To ameliorate the programming burden we have found it easier to again just

work with (6).

In the purely autoregressive case, AR(p), the noninformative prior ir( , A, -2) a a2

can be used. From (4) we can see that a is conditionally normal with mean

[En (zt-,t) andvariance E

tl t=l Olt t= J

and that

fWa A, Z) zt) a (aYexp{ - - (2t 1 - t)21

which is an inverse Gamma density, where the ct are defined below (4). However, as in the

general ARMA case, sampling the 0j subject to the stationarity restrictions is not routine.

4. A useful reparametrization

Consider, first, the pure autoregressive model. The constrained parameter region

for 0, Cp, is analytically intractable for p>4. To complicate matters further, the Gibbs

sampler requires cross-sections of CP, that is, sets for 0, given 4)i, ifj. To circumvent the

problem of dealing with these parameter constraints, we consider successive

transformations from Cp to a p-dimensional hypercube and then to RP. In particular,

Barndorff-Nielsen and Schou (1973) reparametrize 0 in terms of the partial

autocorrelations r of the AR(p) process. This transformation which is one-to-one is

defined by
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(k)
Ok -rk

(k) (k-i) - (k-1)
- 4i -- rk Ok-i i = 1,...,k-1 (7)

where 4, -.. ,&P), 0j being the jth coefficient from an AR(p) process and

r = (r1 ... ,rp). Monahan (1984) reports the inverse transformation in the iterative form
(k-i) (k) , (k) (k)) 1 (k) 2I

=0ii + 4  k-i)/(-(4k ) k i=1,2,. .k-1 (8)

and the Jacobian
[p/2]

J = H (1-r)[(k1)/2- H (1-r2J) (9)
k=1 j=l

The condition that 4 E CP now becomes Irk <1. We, then apply a second

transformation from r to r* E RP. Based cn the experience of other authors, for example,

Smith et. al. (1987), we use the "Fisher-type" transformation discussed in Marriott and

Smith (1992) which performs best for densities with "normal shapes" or mixtures of such

shapes:

rj = log -- j=l,.. ,p.

We would do all of the random generation in the space of the r*'s inverting the r*ls back to

O's at the end.

The complete conditional density for rj arises by transforming the nonnormalized

joint density (5) from (4,, oL, o2) to (r*, A, o-2) and considering the resulting expression as a

function of r! with rt, i~j, 14 and o. fixed. We denote this nonnormalized complete

conditional form by f(r[ r*, iij, 1, a2 ).

For the general ARMA model, assuming invertibility and statioarity, we must, in

addition, generate Oils from their complete conditional distributions, restricting 0 to Cq.

Monahan (1984) has shown that the above two-stage transformation can also be used for

the moving average parameters. We merely replace 4 with 0 and p with q. Applying the

transformation to both 4 and $ results in a transformation from (o,,) E Cp-Cq to say

(r*,, r) E .
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5. Efficient sampling; a modified Gibbs sampler

The standard Gibbs sampler (see Section 3) proceeds by making draws from the

complete conditional distributions in some systematic order. When these distributions are

familiar forms sampling is routine. When this is not so (and when the complete conditional

density does not have special properties such as log concavity) a variety of general

techniques have been proposed. These include approximate c.d.f. inversion (as in Tanner,

1991), ratio-of-uniforms (as in Waxefield, Gelfand and Smith, 1991) and adaptive

mixtures (as in West, 1992).

An alternative which we employ here, for each such nonroutine draw, runs a scalar

valued Markov chain Monte Carlo algorithm whose stationary distribution is the desired

complete conditional. Mimler (1991) proves that, under mild conditions, use of such

univariate trajectories within a trajectory of the Gibbs sampler results in a Markov chain

whose stationary distribution is the desired joint posterior distribution.

More precisely, in our present case suppose we use Ansley's (1979) algorithm to

obtain the MLE for 0 and 0 say (ý, 9) with associated asymptotic covariance matrix

Using the transformation of Section 4 we convert (•, 9) to, say, (i*, i) and, via

the delta method obtain an approximation to the covariance matrix of (f*, i*) which we

denote by E*. Let g(r•, r*) be the multivariate normal distribution over Rp+q having

mean (i, i) and covariance matrix E*. For any coordinate rtj (from either r* or r*) let

g(r t. I r) denote its univariate conditional normal distribution given all of the other r*ls

derived from g p q.

We now take g(r~l'r2. ) to be a Gaussian proposal for a univariate Metropolis

algorithm. That is, we create the following Markov chain. If the current value of rý = u

and a draw from g(rt I r* .-j,) yields v, we calculate the ratio

a(u,v) = f(vIr*, iij, p, o2 )/f(uIrý, i~j, A, a2 ). If a)l we move to v; if a<l we move to v



11

with probability a. It may be straight forwardly demonstrated that the stationary

distribution of this Markov chain is the normalized density associated with

f(rtIr*, iij, A, a2 ) (see, e.g., Hastings, 1970 or Tierney, 1991). An iteration of this

modified Gibbs sampler is thus implemented by, starting with r*, running the associated

Markov chain for m steps, taking the state of r* at the mth step as the updated value and

then proceeding to r*, etc. After all the rt have been updated we draw A, then a 2, then y0

and then eo to complete one iteration.

This hybrid algorithm is attractive in our case because the f's tend to be unimodal

and roughly normal making the Gaussian proposal we are using efficient. Empirical

experience has shown that this algorithm is readily automated and requires far fewer

likelihood evaluations than the previously mentioned techniques resulting in substantially

shorter run times.

To initiate indcpendent parallel replication of the sampler we perturb the MLE (f*,

0, a2 ) obtaining a total of mi starting values (we use m, = 40). After proceeding for

k, iterations with these m1 replications, by resampling we increase mI to m2 replications

(we use m2 =200). We proceed for k2 further iterations with the m2 replications,

monitoring the stability of selected quantiles to judge when convergence may be assumed.

Finally we increase m2 to m3 replications (we use m3 = 500). The sampler is then run for

k3 further iterations before termination. See Gelfand and Smith, (1990) and Gelfand et al.

(1990) for further discussion of such sampling schedules.

In concluding this section we mention an alternative approach for sampling the O's

and O's based upon an idea in Jones (1987). Jones observes that, for instance, 0 may be

drawn uniformly over Cp by drawing r according to a product Beta distribution over the

hypercube Ir, 1<1, j=1,2,.-. .,p. Using ideas in Smith and Gelfand (1992), for given A and
2a, such q's may then be resampled to essentially have the distribution f(Oj/s, a2 , z).

However, this resampling would have to be done for each iteration within each replication
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of the Gibbs sampler (i.e. for each new As, o pair). We believe that this method would be

a very inefficient competitor to our sampling scheme.

6. Missing Values and Outliers

In this section, we propose the use of the sampling based approach to handle missing

values and to detect outliers in an ARMA(p,q) process. This is done by treating such a

value, say zr, as an unknown and adding it as a parameter to the Gibbs sampler. The

complete conditional distribution for Zr, f(z' IZ_r, e¶), is proportional to the right side of

(6) and in fact is a normal distribution with mean and variance having forms similar to

those for the y1-] Alternatively, a convenient Gaussian proposal is the conditional

(0)distribution f(zr I ... ,Zr_ 1' #1) in (3). A natural candidate for a starting value z r is the

mean of the available zi or perhaps an interpolated value using adjacent observed z's. We

(0)
perturb zr to obtain m, starting values for the m, initiations of the sampler. An

iteration of the Gibbs sampler then proceeds as discussed in Section 5 generating, in

addition, a zr. It is straightforward to extend this procedure to the situation with several

missing values or outliers.

7. Prediction

In a Bayesian analysis of ARMA models, prediction proceeds via the predictive

density

f(zFIz) = ff(ZFI, •*). if(*1z ) de (10)

where f(ZF l$, Z) is the density of the future data z. If , F (zn~l, ) then

f(ZF IZ, 1*) = f(Zn, 1 IZ, *•/) • f(zn÷2 Jzn 1 , a, I *) . . f(zn LzIz ,.. .n÷L-1' Z, *1). The use

of (10) contrasts sharply with the non-Bayesian practice in time series analysis of basing

forecasts on a particular set of estimated parameter values, i.e., on f(ZF Z, I0). It is well
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known (see e.g. Carlin and Gelfand (1990)) that although point estimates arising from

f(zF z, I*j) perform well, interval estimates will generally be too short, the variance of this

distribution too small. In fact there is recent literature on correcting for this effect by

incorporating the variability due to parameter estimation into the prediction mean square

error (Stine, 1987).

In studying (10) the sampling based approach again fits nicely. Using the output of

the Gibbs Sampler, ej , j=1,-.. ,m, an approximation to the density itself may be obtained

as the Monte Carlo integration

f(ZF Z) E f j Z IZ'Vl

i=1

To obtain a sample of predictions from the density (10), for each we draw ZFj from

fC(-F I )-Vi

8. Model determination

Model determination involves two aspects - model choice (selection amongst

models) and model adequacy (performance of a particular model). Bayesian assessment of

model adequacy resides in predictive distributions by which comparison is made between

what the model predicts and what was observed. (In fact most any model evaluation

scheme relies on such comparison).

For pairwise choice between models the formal Bayes criterion requires calculation

of the Bayes factor (ratio of predictive distributions) adjusted by a weight which can be

regarded as the prior odds associated with the models. Poskitt and Tremayne (1983) nicely

unify such Bayesian model selection for time series models in showing that various

established criteria, e.g., AIC, BIC, Oc and S may be viewed as approximate Bayes factors

adjusted. by weights reflecting sample size and model dimension. Unfortunately, with

improper priors on the parameters (as in our case) predictive distributions become

improper so that interpretation of the Bayes factor is unclear. Possible remedies involve
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utilizing the predictive distribution in a different form. See Gelfand, Dey and Chang

(1992) for a recent discussion as well as for ad hoc criteria compatible with the

sampling-based approach we have adopted here.

Perhaps more importantly, we would prefer that model selection not be based upon

a single number. Rather, we would prefer to compare the predictive performance of

competing models at each time point. Hence we propose to look at the predictive

distribution for the entire series given what we have observed. More specifically if the

observed series is zobs (Z iobs, ... Zn,obs ) and we wish to predict a replication of the

series z = (zl, ... , zn ) given zobs (and a particular ARMA model) then the predictive

distribution of z given zobs is, analogous to (10),

f(zl Zobs) = ff(zI *) "' I(Zob) (12)

To draw samples from f(zIz obs) we need only draw 0 from w* Izobs) and then, given #1,

draw z from f(zI*'). The output of our modified Gibbs sampler provides a sample *,

j=1, ... , m from the posterior. Given Vj, z, can be drawn sequentially using (3).

Comparison of the sampled zj 's, j=1, ... , m with Zobs can be done in many ways.

We view such comparison in a diagnostic fashion eschewing formal inference. In particular

an appealing graphical display, which is used for the examples of Section 9, may be created

as follows. If z, ~ f( IZobs) then the tth component of zj, z t ~ f(zt I"obs) the predictive

distribution at the tth time point. Suppose we use the sample fzj t, j=1, .. , m} to obtain

E(zt ISobs) and var(zt I obs) and plot I z t,obs - E(zt I obs)I vs / var(zt I 0).

This display reveals model adequacy via a point cloud close to the origin, i.e.,

predictive distributions have small dispersion and the observations are consonant with

these distributions. Furthermore, all points lying below the line y=2x on this plot are such

that the observed y roughly falls within a 95% predictive interval. Outlying observations

will lie well above this line. Extending these ideas, the display becomes an informal model
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choice plot. In particular, suppose we are comparing nested models. As we run through a

portfolio of nested models, with increasing dimensionality, we expect to pass from say a

poor model to a satisfactory parsimonious choice to an overfitted one. This will be

manifested in the display as follows. The poor model will perform badly on both the x and

y scales, the satisfactory parsimonious model will perform well on both scales, the

overfitted model will perform well on the y scale but will yield less concentrated predictive

distributions than the parsimonious one and hence do worse on the x scale. The same

principles should guide choice between two nonnested models, e.g., ARMA (3,5) vs. ARMA

(4,2) - the one with the point cloud closer to the origin is preferred. When the two clouds

overlap considerably choice between models is unclear. This recognition seems preferable

to a decision based upon a single number. Returning to nested models, an alternative

informal model selection approach looks at the posterior distribution of the "discrepancy"

parameters, i.e., the parameters in the full model which are not in the reduced model. For

instance, in comparing an ARMA (3,3) with an ARMA (2,3), we would examine the

posterior distribution of 03 by using the generated 03, j=1, ... , m to see where 0 falls.

Again, we illustrate the use of these model determination tools in conjunction with the

examples of the next section.

9. mustrative Examples

We present two examples to illustrate our methodology. Example 1 consists of the

quarterly seasonally adjusted U.S. unemployment rate between 1948-1972 (Fuller, 1976), a

series of n=100 observations. We model this data by autoregressive processes. AR(p)

models, 1<p55 have been fitted by Shumway (1988), and the AR(2) model was selected as a

best parsimonious choice since the maximum likelihood estimates of 03, 04 and 0, are not

significantly different from 0. Using the likelihood in (4) we present here the results from

an exact Bayesian analysis. In Table 1 we fit the AR(1) model based on the first 96

observations, the last 4 observations being held out for forecast evaluation. The maximum
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likelihood estimates for the parameters, from which the Gibbs sampler is started, are

obtained by the Ansley algorithm. Table 1 presents the MLE's together with their

standard errors. Also given are the mean and standard derivation as well as selected

percentiles of the marginal posterior distributions for the parameters obtained from the

Gibbs sampler. We note that the values at the 50 th percentile for the A, p and a 2

correspond closely to the MLE's. The extreme percentiles enable equal tail Bayesian

interval estimates.

Similarly, Tables 2-5 present the results of fitting the AR(2), AR(3), AR(4) and

AR(5) models respectively. Interval estimates for the parameters 403, 04 and 05

comfortably contain 0, enabling selection of the AR(2) model. For this model we also

present in Table 2, results from assuming 0, 1, 5 and 20 percent of the n=96 observations

as missing. As in Section 6, we treat the missing observations as parameters along with

01, 02, i, a2. Inference seems to be little affected even with as much as 20% missing data.

Table 6 presents the forecasts for the data modeled by AR(2) model, as described in

Section 7, for t=97, 98, .-. , 100. Figure 1 presents a display of the type described in

Section 8 showing the AR(1), AR(2) and AR(5) models. Clearly the AR(1) model is poor

with the AR(2) and AR(5) models quite similar.

The data for the second example are the logarithms (base 10) of the Canadian lynx

trap counts over a 114 year period (1821-1934). This series has been modeled in the

literature by, e.g., Priestley (1981) and Tong (1977). In the class of ARMA models, the

AR(2), AR(11) and ARMA (3,3) models have been discussed. Note that there is no

nesting between the latter two. The fits for the AR(2) and AR(11) were obtained

analogously to those in the first example and are presented in Tables 7 and 8 respectively.

The ARMA (3,3) model was fit using the likelihood in (6) with results given in Table 9.

Finally Figure 2 presents a display of the type discussed in Section 8. The AR(11) appears

preferable to the AR(2) but the AR(3,3) seems the best of the three.
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BAYESIAN ANALYSIS OF ARMA PROCESSES: COMPLETE SAMPLING BASED

INFERENCE UNDER FULL LIKELIHOODS

John Marriott, Nalini Ravishanker, Alan Gelfand

and

Jeffrey Pai*

Abstract

For a general stationary and invertible ARMA (p,q) process, we show how to carry

out a fully Bayesian analysis. Our approach is through the use of sampling based methods

involving three novel aspects. First the constraints on the parameter space arising from

the stationarity and invertibility conditions are handled by a convenient reparametrization

to all of Euclidean (p+q)-space. Second, required sampling is facilitated by the

introduction of latent variables which, though increasing the dimensionality of the

problem, greatly simplifies the evaluation of the likelihood. Third, the particular sampling

based approach used is a Markov chain Monte Carlo method which is a hybrid of the Gibbs

sampler and the Metropolis algorithm. We also briefly show how straightforwardly the

sampling based approach accommodates missing observations, outlier detection, prediction

and model determination. Finally we illustrate the approach with two examples.


